Changes for the Better

SPIRAL ESCALATOR ${ }^{\circledR}$

Let your imagination run free

A vision of future of modern architectural space design made feasible today. In order to provide the space that building owners could only once dream of, Mitsubishi Electric developed the world's first curved escalators. Carefully intermixing vertical and rotational movements, an elegant arch is created utilizing one-and-only escalator technologies no other company has been able to achieve. The three-dimensional motion creates an expansive panoramic view for users, and the innovative design transforms the area into an unprecedented architectural masterpiece. An artisan skill called Takumi (in Japanese) is utilized, where the maker demands perfection and refuses to compromise down to the smallest detail. All of thi to ensure satisfaction to the customer in the joy of ownership and welcome visitors with an experience that is exciting and unforgettable.

New-generation luxurious department stores offering boti raditional ambience and an entertaining atmosphere Nitsubishi Electric's SPIRAL ESCALATORs are installed in the central stairwell area of the facility, realizing an incomparable open-space design that gives the impression of floating on air. This landmark installation in Shanghai is
enjoved by visiting shoppers and tourists.
hanghai New World Daimaru

Inspirational
Beauty
The majestic Venetian Macao Resort Hotel complex features various facilites for leisure and amusement, such as a hot ESCALATOR is installed at the center of the casino, creating a massive open-ceiling space at the heart of the facility. There is stage for street performances and the arching presence of the escalator contributes as an inspirational piece of the architectur producing a seemingly medieval atmosphere

The Venetian Macao-Resort-Hotel

Artistic Beauty 07

Misubishi Electrics SPIRAL ESCALATOR takes center stage in the large shopping complex at Caesars Palace in Las Vegas. A series of escalators connect each floor, allowing people to enjoy a spacious panoramic view the atrium, designed in the image of ancient Greco-Roman architecture.

Dynamic Beauty

An uplifting experience every time
Mitsubishi Electric's SPIRAL ESCALATOR is not simply a means of transportation. Once onboard, passengers seemingly float on air as they travel through space. The sweeping three-dimensional motion produces an expansive panoramic vie that excites and entertains. A continuous multi-layered atrium arrangement adds beautiful ambience to the architectural structure.

Inspirational Premy Beauty

Fascinating premium appeal
Mitsubishi Electric's SPIRAL ESCALATOR expresses a unique presence, creating a special space to welcome VIPs. When installed in an open-ceiling facility, the escalator symmetry enhances the feeling of spaciousness, sophistication and comfort, transforming the area into a cordial location where many people can gather.

Breath-taking artistic design delivers added-value
Combined with highly advanced building design, Mitsubishi Electric's SPIRAL ESCALATOR enhances architectural tructures by delivering added-value and artistic appeal. The unique "interior in motion" attraction produces a specia space and time for tenants and visitors alike to enjoy. Installed in facilities such as museums or art museums, the escalators give a three-dimensional perspective to traditional buildings and exhibits, further confirming their high affinity in architectural design.

Escalators drawing an arc once said
 to be physically impossible.

There is a reason that this conld

ony be achieved by Misubishi Electric.

Escalators drawing arcs unique in appearance.
The rotational moment is complex in form, with the longitudinal movement closely intertwined. To accomplish this, although the concept had long existed around the world, it had not been successfully achieved. Then, in 1985, Mitsubishi Electric successfully developed what is now called the "SPIRAL ESCALATOR. Today, 31 years later, Mitsubishi Electric remains the only company to manufacture the SPIRAL ESCALATOR.

At first glance, these escalators appear to have curvatures without any special features. But the arcing structures achieved use elaborate, sophisticated technologies only capable of being realized applying the design,
manufacturing, and installation skills of expert engineers.

Vanufacturing

Discovery of the

"Centralized motion method" principle Most curving escalators once proposed around the world were based on methods for movement in a concentric circle. But none ever made it to market. Even though the speed of horizontal movement when creating a semi-circle is regular, making it possible to move concentrically, the structural problem is that movement in the horizontal direction slows to the extent that there is vertical movement in the horizontal direction slows to the extent that there is vertical
movement in the inclined section. Mitsubishi Electric overcame this issue by developing the "centralized motion method," in which the central point moves in stages based on the angle of incline.

- Centralized motion method
 C. Midpoint incline interval D. Lowertransition interval E. Upper horizontal interval
\square Step chain travels in 3D directions

Elaborate processing only possible using manual labor
As the SPIRAL ESCALATOR requires complicated three-dimensional movement, various components must be processed into unique shapes such as curved trusses and steps with arch-like grooves. The complex shape of the track makes it one of the parts that requires a meticulous process utilizing intricate manufacturing technologies. Using special tools and original forming know-how, technicians finish the tracks manually by repeatedly performing a series of bending and twisting processes. Even when applying three-dimensional torsion, a final accuracy of 0.1 mm or less is ensured, thus realizing smooth, precise motion.

nstallation

Highly precise installation
Specialized installers assemble the truss by connecting up to 6,000 custom-shaped parts. After installation, multiple quality assurance checks are carried out to ensure that the finished product embodies Mitsubishi Electric quality in the most detailed areas.

Innovation supporting 3D movement Unique technologies were required to achieve the complex three-dimensional (3D) movement of the SPIRAL ESCALATOR. For example, a special chain capable of supporting a wide variety of angles required for the spiral orbit was introduced to move the steps. Horizontal rollers are installed on the outer-side of the chain, enabling the structure to manage the inward force generated by the arching configuration. This enables the escalator steps to move along the fixed orbital plane with high accuracy.

Safety \& comfort

In order for our customers to use these escalators anxiety-free and thus enjoy maximum comfort, various safety devices and functions are incorporated to guarantee smooth boarding and exit and advanced passenger safety during use.

For boarding

Yellow Demarcation Comb and Cleats
A yellow demarcation comb at the rear edge and yellow cleats at both sides make clear definition of each step very
easy These measures make boardin easy. These measures make boardin
the escalator easier and safer.

Low-friction Material on Skirt Guard The skirt guards have a special painting/ coating on the surface,
ensuring a low coefficient of friction ensuring a low coefficient of friction
and minimizing the risk of items and minimizing the risk of items getting caught.

Comb Light (optional Lighting provided at comb level
increases illumination, which furthe increases illumination, which further step as well as visual effect.

Inlet Guards
These guards, formed of flexible
rubber, inhibit fingers from being
drawn inside by the movement of the
handrail, making the escalator safer handrail, mak
for children.

In an emergency

Safety devices
Various safety devices activate at the time of an emergency, protecting passenger safety

- Standard, O: Optional

	Safety device	Description	Application
©	Handrail Guard Safety Device (HGS)	1) Inlet Guard A guard made of soft rubber, which fits over the outside of the moving handrail where it enters the balustrade to keep fingers, hands or foreign objects away from the moving handrail opening 2) Inlet Guard Switch A safety device that stops the escalator when physical contact is made with the inlet	\bullet
(2)	Emergency Stop Button (E-STOP)	A button to immediately stop the escalator in emergency situations	\bullet
(3)	Comb-step Safety Switch (CSS)	A safety device that stops the escalator if a foreign object becomes trapped in the gap between the step and comb	\bigcirc
(4)	Skirt Guard Safety Device (SSS)	A safety device to stop the escalator if a shoe or other item becomes trapped in the gap between the step and skirt guard	-
9	Step Motion Safety Device (CRS)	A safety device to stop the escalator when a step has been dislocated on its riser side because of an object caught between the steps, or between the skirt guard and the step, or if an abnormality has been observed in the step motion	-
\bigcirc	Step Level Device (SRS)	A safety device that stops the escalator if the horizontal level of a step has dropped	\bullet
-	Step Chain Safety Device (SCS)	A safety device that stops the escalator if the step chain breaks or stretches beyond an allowable limit	\bullet
(8)	Handrail Speed Safety Device (HSS)	A safety device that stops the escalator if the moving handrails fail to synchronize with the steps because of slippage, loosening or breakage of the moving handrails	\bigcirc
\bigcirc	Drive Chain Safety Device (DCS)	A safety device that stops the escalator if the drive chain breaks or stretches beyond an allowable limit	\bullet
(1)	Speed Governor (GOV)	A safety device that stops the escalator before the operating speed exceeds 120% of the rated speed or if the operation speed becomes unusually slow	\bullet
(1)	Electromagnetic Brake	A safety device that stops the escalator in the case of power failure, or if any safety device or the emergency stop button has been activated	\bullet
(2)	Overload Detection Device	A safety device that stops the escalator if overload has been detected	\bullet
(3)	Three Elements (3E)	A safety device that stops the escalator if any of the three abnormal conditions is detected: open phase (wire breakage), phase reversal or overload	\bigcirc

The options described in the table are incorporated as standard equipment based on applicable local codes or regulations.

Design planning precautions

Please consult our local agents if any anti-earthquake measures are required based on regulations. Depending on the situation, collaborative construction work may be required regarding method of support of the escalator in the building.

Installation Examples

Why not add a Mitsubishi Electric SPIRAL ESCALATOR to your special building design. Discover how to use the arching curves to create a unique space not possible using normal escalators.

Entrance plan
Symbolizing and accenting spaciousness, the SPIRAL ESCALATOR dramatically portrays an increased field of vision. The principal objective of the layout is to create a space where people can stop, rest and communicate, such as a lobby, lounge, or public area.

Open-air plan
Installation at the center of a structure creates an open-ceiling space that improves the atmosphere and impresses users with an expansive breadth of vision. It is also possible to use the area as an element for promoting window shopping and to announce special events.

Corner plan

Installation in a corner or along the wall of a building effectively frees up the central floor area for other uses. This is an excellent choice for a building housing major retailers or an art gallery.

Plaza plan
An elegant entrance with open space is easily achievable by interweaving space and arching curves. Ideal for creating a comfortable place for people to meet or various other purposes, and improving building name value and adding value to the building structure itself.

Multiple plan
A truly panoramic view can be achieved through consecutively linked layouts. This gives the appearance of a huge objet d'art, overflowing with a sense of opulence.

Installation List

Important Information

Project name	Location	Completion	Unit	Rise (m)
International exhibition center osaka	OSAKA, JAPAN	1985	2	5
AQ'A HIROSHIMA CENTER CITY (See the plaza plan in page 14.)	HIROSHIMA, JAPAN	1986	1	5
SAN FRANCISCO CENTER (See the multiple plan in page 14.)	SAN FRANCISCO, USA	1988	$\frac{2}{4}$	${ }_{6}^{6.6}$
LOTTE WORLD	SEOUL, KOREA	1988	2	5.5
YOKKAICHI STAR ISLAND (See the corner plan in page 14.)	YOKKAICHI, JAPAN	1988	1	5.2
ims building	FUKUOKA, Japan	1989	1	4.5
best denki ltd. naha store	NAHA, JAPAN	1989	1	3.9
Yamako department store	KOFU, JAPAN	1989	2	5
hirakata building	HIRAKATA, JAPAN	1990	1	4.6
NAKAYAMA HORSE RACING FIELD	FUNABASHI, JAPAN	1990	1	5.1
MITSUBISHI ELECTRIC CORPORATION INAZAWA WORKS	InAZAWA, JAPAN	1990	1	4.5
YONAGO SHOPPING CENTER	YONAGO, JAPAN	1990	2	4.9
TOKYU STORE SUSUKINO	YOKOHAMA, JAPAN	1991	1	4.5
TIMES SQUARE (See the open-air plan in page 13.)	HONGKONG, CHINA	1993	$\frac{2}{2}$	4.5
big Step [SHINSAIBASHI BUILDING]	OSAKA, JAPAN	1993	2	5
WHEELOCK PLACE	SINGAPORE	1993	4	4.1
LANDMARK TOWER YOKOHAMA	YOKOHAMA, JAPAN	1993	2	4.5
LIVERPOOL SANTA FE	SANTA FE, MEXICO	1993	2	5.6
NEXT-21 PROJECT	NIIGATA, JAPAN	1993	1	5
Sogo department store	KITAKYUSHU, JAPAN	1993	4	4.5
UTENA PROJECT	TOKYO, JAPAN	1993	2	4.2
DAYER TAKASHIMAYA DEPARTMENT STORE	TAIPEI, TAIWAN	1993	2	4.5
GOLD AND JEWELRY MARKET	ABU DHABI, U.A.E.	1993	2	6
SHANGHAI NEW WORLD MARKET	SHANGHAI, CHINA	1996	2	6.3
YAMAGATAYA MONZEN-NAKAMACHI BUILDING	TOKYO, JAPAN	1995	1	5.4
FUKUKO FUKUSHIMA STATION BUILDING	FUKUSHIMA, JAPAN	1996	1	4.6
Yang Cheng world trade center	GUANGZHOU, CHINA	1997	2	4
IZUTSUYA DEPARTMENT STORE	YAMAGUCHI, JAPAN	1998	1	4.4
TSUYAMA, TENMAYA	TSUYAMA, JAPAN	1998	2	5.5
Jeddah hllton hotel	Jeddah, Saudi arabia	1999	2	5
WTC mang ga dua	Jakarta, indonesia	2003	2	6.6
BLOOMBERG BLDG.	NEW YORK, USA	2003	1	4.9
THE FORUM SHOPS AT CaESARS (See page 7 .)	LAS VEGAS, USA	2003	4	6.6
WYNN LAS VEGAS	LAS VEGAS, USA	2004	2	5.5
BRILLA TOWER TOKYO	TOKYO, JAPAN	2006	1	6.1
THE VENETIAN MACAO RESORT HOTEL (See page 5.)	macao, China	2007	2	5.2
GULF CITY MALL	TOBAGO, TRINIDAD AND TOBAGO	2010	2	4.4
RIVER ROCK CASINO (See the entrance plan in page 13.)	VANCOUVER, CANADA	2010	2	6.6
Amiri terminal building	Kuwart city, Kuwait	2010	2	6.0
CONVENTION CENTRE EXTENSION \& LINK BRIDGE TO QSTP AT WAJBA, DOHA, QATAR	DOHA, QATAR	2011	2	5.0
SHANGHAI NEW WORLD daimaru (See page 3.)	SHANGHAI, CHINA	2015	12	6.6
MITSUBISHI ELECTRIC INAZAWA WORKS SOLAÉ PLACE	InAZAWA, JAPAN	2016	1	4.0
the avenues	Kuwart city, Kuwait	201	2	6.0
SEMINOLE HARD ROCK HOTEL \& CASINO TAMPA	TAMPA, USA	2019	2	6.6
ENCORE BOSTON HARBOR	BOSTON, USA	2019	2	5
STARBUCKS RESERVE ROASTERY	CHICAGO, USA	2019	1	4.7

Work not included in the escalator contract
The following items are not included in Mitsubishi Electric's escalator installation work, and the responsibility for carrying them out lies with the building owners or general contractors:

- Building construction and alterations associated with escalator installation
- Provision of intermediate support beams

Flor finihing inding mounting plate
Provision of fire-proofing and fire- preve
Provision of fire-prevention shutters (iftion measures for escalator exterior materials and around escalator installation
Wiring for the escalator's main drive and lighting, from around the middle portion of the truss to the escalator's control unit in the upper truss
Other wiring and electric conduits
Provision of convenience outlets in the upper and lower trus
Outer panel sheathing of truss

- Provision of inspection doors (lockable doors if installed in an environment where anyone could access and open the doors)
- All items for which procurement by building owners is instructed (with wording such as "by owner")

Notes on building work

- Tolerance in distance between supporting beams: +30 mm to 0 or $13 / 8^{8}$ to 0

Flooring around the escalator must not be finished until the escalator is installed.

- Flooring within 300 mm or $12^{\prime \prime}$ of the escalator floor plate must not be finished until the floor plates are in place.
- Sprinkler pipes or wiring for soffit lights, or any other electric conduits for items other than escalator, must not be laid inside the truss.
No walls or other parts of the building structure must be supported on the truss.
Allowable maximum weight of outer sheathing: $20 \mathrm{~kg} / \mathrm{m}^{2}$ or 0.028 psi

Other Concepts

Other options available include items such as box beam support or a premium finish.

Box beam

Utilizing a construction method known as "box beam" and collaborating with the building construction company, it is possible to eliminate the use of beams or columns for support thereby creating a more attractive, alluring design. As the escalator is supported entirely by the box-shaped beam, the square production makes it appear that the escalator is floating in

"Premium Finish" proposal
The SPIRAL ESCALATOR expresses a premium presence of luxury. This value is accentuated by a consistently detailed finish overflowing with a sense of class. Various equipment and options are available upon request. For example, guardrail, deck boards and posts can be finished in the color of gold.

Layout \& Specifications

Standard Dimensions and Overall Loads

$\begin{gathered} \text { Rise } \\ \text { HE }(\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Dimension } \\ \mathrm{A}(\mathrm{~mm}) \end{gathered}$	$\underset{\mathrm{B}(\mathrm{~mm})}{\mathrm{Dimension}}$	Angle between truss ends θ_{T}	Angle between handrail ends $\theta \mathrm{H}$	$\begin{gathered} \text { Total support load } \\ \mathrm{W}=\mathrm{RA}+\mathrm{RB}+\mathrm{RC}+\mathrm{RD}(\mathrm{kN}) \end{gathered}$
3500	12920	5810	118.7	102.9	270
3800	13060	6080	125.2	109.4	280
4000	13120	6260	129.5	113.7	284
4200	13170	6440	133.8	118.1	289
4400	13200	6620	138.1	122.4	299
4600	13210	6800	142.4	126.7	304
4800	13200	6980	146.8	131.0	309
5000	13170	7150	151.1	135.3	319
5200	13120	7330	155.4	139.6	324
5400	13050	7500	159.7	144.0	329
5600	12970	7670	164.0	148.3	333
5800	12870	7840	168.4	152.6	338
6000	12750	8010	172.7	156.9	348
6200	12610	8120	177.0	161.2	353
6400	12480	8330	181.3	165.6	358
6600	12430	8560	185.6	16.9	363

Notes:

1. The truss support angle is not included in dimension RA A and RD will vary according to the positions of the supports; however, they will total W in the"Total support load"column.

Basic Specifications

Model	1200
Effective width between balustrades	1200 mm
Step width	1005 mm
Carrying capacity	6300 persons $/$ hour
Rated speed *1	$25 \mathrm{~m} / \mathrm{min}$
Inclination angle ${ }^{* 2}$	30°
Power source	for driving
	for lighting inside machine room
Sirection of curve ${ }^{* 3}$	Single-phase, $200 / 400 \mathrm{ACV}, 50$ or 60 Hz or $210 / 440 \mathrm{ACV} 60 \mathrm{~Hz}$
Applicable rise	Left or right

Notes:
*2: Angeed is is measured at the outer side of step.
*2: Angle is measured at the inner side of step.
4. Applicabl ise is 3500 when viewed from the floor plate on the lower floor, the escalator is curving to the left as it rises. "Right curve" is defined vice versa.

List of Finishes

	Interior panel	Curved transparent tempered glass with hairline-finished stainless steel posts
	Guardrail	Extruded aluminum anodized hairline finish
	Corner deckboard	Hairline-finished stainless steel
	Outer deckboard	Hairline-finished stainless steel
	Inner deckboard	Hairline-finished stainless steel
	Skirt guard	Fluoride resin coating finished (black)
	Moving handrail	Synthetic rubber (standard color: deep red, blue or black)
Step	Tread board	Aluminum alloy (groove color: black)
	Cleated riser	Aluminum alloy (black)
	Demarcation line	Demarcation-comb: polycarbonate resin mold (yellow); Side lines: painted (yellow)
	Comb	Resin mold (yellow)
	Comb plate	Stainless steel plate with anti-slip pattern (groove color: black)
	Landing plate	Stainless steel plate with anti-slip pattern (groove color: black)
	Manhole cover	Stainless steel plate with anti-slip pattern (groove color: black)

Trademark Rights

Quality in Motion is a trademark of Mitsubishi Electric Corporation.
SPIRAL ESCALATOR is a registered trademark of Mitsubishi Electric Corporation.

State-of-the-Art Factories...

For the Environment. For Product Quality.

Mitsubishi Electric elevators and escalators are currently operating in approximately 90 countries around the globe. Built placing priority on safety, our elevators, escalators and building system products are renowned for their excellent efficiency, energy savings and comfort The technologies and skills cultivated at the Inazawa Works in Japan and 12 global manufacturing factories are utilized in a worldwide network that provides sales, installation and maintenance in support of maintaining and improving product quality.
As a means of contributing to the realization of a sustainable society, we consciously consider the environment in business operations, proactively work to realize a low-carbon, recycling-based society, and promote the preservation of biodiversity.

ISO9001/14001 certification

Mitsubishi Electric Corporation Inazawa Works has acquired ISO 9001 certification from the International Organization for Standardization based on a review of quality management. The plant has also acquired environmental management system standard ISO 14001 certification.

\triangle Safety Tips: Be sure to read the instruction manual fully before using this product.

